Antes de continuar a ler sobre o Diagrama H-R e aprender sobre estrelas de sequência principal, é recomendado ler esse outro artigo onde apresentamos conceitos prévios de radiação de corpo negro, espectroscopia astronômica e classificação espectral.
No começo do século XX, dois astrônomos, Ejnar Hertzsprung e Henry Norris Russell, descobriram, de forma independente, que as estrelas poderiam ser correlacionadas e agrupadas em um gráfico de dispersão levando em conta sua luminosidade e sua classificação espectral — ou temperatura efetiva.
Essa organização formava três grupos distintos. O maior dos grupos, chamado de sequência principal, onde aproximadamente 90% das estrelas se encaixam, se propaga em uma faixa diagonal do canto superior esquerdo até o canto inferior direito. O segundo grupo é o das anãs brancas, que se aglomeram no lado esquerdo e inferior do gráfico e representam um grupo de pequenas estrelas do tamanho da Terra e são o que restou do núcleo incandescente de antigas estrelas maiores. Por fim, o terceiro grupo se localiza na parte superior do gráfico, o grupo das estrelas gigantes e supergigantes.
Inicialmente, Norris Russel imaginou que as estrelas evoluíam dentro da sua faixa da sequência principal, indo de um ponto até o outro. Estudos posteriores mostraram que essa teoria estava incorreta. A depender de sua massa, estrelas já nascem em um determinado ponto na região da sequência principal, e sua massa determina também como elas saem dessa faixa, migrando para outras regiões à medida que envelhecem.
O diagrama H-R é uma das ferramentas mais importantes para os astrônomos e mudou completamente a forma como compreendemos a evolução estelar.
A estrutura do diagrama

O diagrama de Hertzsprung-Russel (ou apenas diagrama H-R) é um gráfico de dispersão que considera a luminosidade das estrelas (normalmente plotada no eixo vertical Y) e sua classificação espectral (normalmente plotada no eixo horizontal X). O eixo de luminosidade segue escala logarítmica, já que o brilho de uma estrela pode variar enormemente com seu tamanho e temperatura. O eixo que descreve sua classificação espectral considera a temperatura de superfície da estrela. Quanto mais quente a estrela, mais ela se encontra do lado esquerdo, próxima do eixo Y; quanto mais fria, mais ela se encontra do lado direito.
As classes espectrais são O, B, A, F, G, K e M. Cada uma dessas classes é dividida em outros 10 graus (de 0 a 9) e cada estrela recebe uma designação em algarismo romano de I a V, onde I são estrelas mais luminosas e V as mais apagadas. Estrelas quentes normalmente são da classe O e B, com temperaturas de 10.000-40.000 K. Suas contrapartes mais frias recebem as classes K e M. O nosso Sol se localiza mais ou menos no meio dessa linha: classe G2V.
NOTA: Você pode ler mais sobre o assunto e muito mais detalhes nesse artigo aqui, específico sobre classificação espectral e temperatura de cor.
Estrelas que se localizam na parte superior do gráfico são extremamente luminosas e, consequentemente, possuem um diâmetro muito maior. Esse é o reino das estrelas gigantes dentro do diagrama H-R. São estrelas massivas, e é exatamente devido ao seu tamanho (podendo ultrapassar 1000 vezes o diâmetro do nosso Sol) que são muito luminosas: quanto maior a área da estrela, mais luz é emitida.
Por outro lado, estrelas localizadas na parte de baixo são bem pequenas, chamadas de estrelas anãs. As anãs brancas têm um grupo especial no lado esquerdo do gráfico e são núcleos remanescentes de antigas estrelas. As anãs localizadas do lado direito do gráfico são as anãs vermelhas e as anãs marrons, estrelas da sequência principal consomem seu hidrogênio muito lentamente, são estrelas bem mais frias e podem viver por até centenas de bilhões de anos — ao contrário das estrelas no canto superior esquerdo que esgotam seu hidrogênio em poucos milhões de anos.

A sequência principal

O agrupamento mais proeminente, e o que mais chama atenção nos diagramas H-R, é o eixo diagonal que se desloca do canto superior esquerdo para o inferior direito. É o eixo das estrelas da sequência principal.
A sequência principal representa o estágio de maior estabilidade das estrelas e essa classificação abriga aproximadamente 90% das estrelas conhecidas, incluindo o nosso astro-rei. A principal característica dessas estrelas é que elas estão na etapa de fusão de núcleos de hidrogênio (H) em hélio (He), estágio onde passam a maior parte de seu ciclo de vida. Estão na primeira metade de sua idade, ainda com muito combustível para queimar e seu núcleo está em equilíbrio estável entre pressão e força gravitacional.
A posição inicial de uma estrela recém-nascida nesse eixo é chamada de Sequência Principal de Idade Zero (ou ZAMS, do inglês). Estrelas novas podem surgir em qualquer ponto desse eixo, dependendo de sua massa. Essa faixa da sequência principal é diagonal, pois estrelas de grande massa tendem a ser mais quentes e consumir seu hidrogênio mais rapidamente, portanto são mais luminosas, de cor branca ou azulada, e ocupam o canto superior esquerdo. Estrelas de menor massa tendem a ser mais frias, avermelhadas, consomem seu combustível mais lentamente, são menos luminosas e, portanto, ocupam a porção inferior direita.

Para os curiosos matemáticos, a luminosidade (L) e o raio (R) de uma estrela podem ser correlacionados com uma temperatura efetiva (Te) através da lei de Stefan-Boltzmann:
$$L = 4 \pi \sigma R^2 T_{e}^4$$
Onde $\sigma$ é a constante de Boltzmann.
Pelo fato de as estrelas da sequência principal variarem tanto de massa, e por motivos didáticos, dividiremos a sequência principal em duas partes. Estrelas na metade inferior, com até 1,5 massas solares, fundem o hidrogênio numa reação nuclear conhecida como cadeia próton-próton. Estrelas acima de 1,5 massas solares (que ocupam a metade superior do gráfico) o processo de fusão acontece pelo ciclo de carbono, nitrogênio e oxigênio, conhecido como ciclo CNO. Falaremos sobre esses dois ciclos em detalhes no próximo capítulo sobre nucleossíntese estelar.

À medida que as estrelas vão envelhecendo e transformando elementos leves em elementos mais pesados, sua temperatura e luminosidade também muda, então essas estrelas começam a se deslocar pelo diagrama H-R. Normalmente esse deslocamento ocorre na direção do canto superior direito, para o ramo das gigantes vermelhas. As estrelas ficam maiores e, portanto, mais luminosas; e se esfriam, logo, se deslocam em direção à classe M. Chamamos esses caminhos que as estrelas percorrem ao longo da vida de “traços evolutivos”.
O estudo desses traços evolutivos é um ramo importante na astrofísica estelar e envolve pesquisas dedicadas. A posição da estrela dentro desse traço evolutivo permite aos astrônomos estimar a idade dessa estrela, sua composição e quantos anos restantes aquela estrela tem até sua morte.
O estudo dos traços evolutivos também permite prever o futuro do nosso próprio sistema solar, quando o Sol esgotar seu combustível e definir para sempre o destino dos planetas que o orbitam.